Local visual features extraction from texture+depth content based on depth image analysis

نویسندگان

  • Maxim Karpushin
  • Giuseppe Valenzise
  • Frédéric Dufaux
چکیده

With the increasing availability of low-cost – yet precise – depth cameras, “texture+depth” content has become more and more popular in several computer vision and 3D rendering tasks. Indeed, depth images bring enriched geometrical information about the scene which would be hard and often impossible to estimate from conventional texture pictures. In this paper, we investigate how the geometric information provided by depth data can be employed to improve the stability of local visual features under a large spectrum of viewpoint changes. Specifically, we leverage depth information to derive local projective transformations and compute descriptor patches from the texture image. Since the proposed approach may be used with any blob detector, it can be seamlessly integrated into the processing chain of state-of-the-art visual features such as SIFT. Our experiments show that a geometry-aware feature extraction can bring advantages in terms of descriptor distinctiveness with respect to state-of-the-art scale and affine-invariant approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Color & Texture Feature Extraction for Content Based Image Retrieval

Content based image retrieval (CBIR) is a challenging problem due to large size of the image database, difficulty in recognizing images, difficulty in devising a query and evaluating results in terms of semantic gap, computational load to manage large data files and overall retrieval time. Feature extraction is initial and important step in the design of content based image retrieval system. Fe...

متن کامل

Content Based Image Retrieval Using Gabor Texture Feature and Color Histogram

In this paper, we present content based image retrieval using two features color and texture. Humans tend to differentiate images based on color, therefore color features are mostly used in CBIR. Color histogram is mostly used to represent color features but it cannot entirely characterize the image. Color Histogram is also rotation invariant about the view axis. Regularity, directionality, smo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014